

Coastal CUBEnet

Steve Stanic Landry Bernard Jason McKenna Vishwamithra Sunkara

http://oceancube.usm.edu/ or http://131.95.7.148/

- The Northern Gulf of Mexico is fast becoming the go-to maritime test range for DARPA, DHS S&T, ERDC, NRL, and other Federal R&D agencies.
- To support the emerging requirements USM's has developed its Coastal CUBEnet Environment.
- The CUBEnet with its Environmental Intelligence (EI) infrastructure is a high-resolution, coastal ocean sensor, modeling, and data sharing network that provides the integrated infrastructure needed for collaborative ocean research products.
- This specifically includes high-resolution products needed for the testing and evaluate of UMS.
- The EI provides the networked Blue Economy stakeholders with the ability to access models, and high- resolution data for real-time or near-real Gulf coastal policy decisions with much greater accuracy and confidence.

- USM's EI network is a platform for the ongoing development of hydrodynamic, machine learning, and other artificial intelligence models.
- The CUBEnet and its EI offers the opportunity to bring in expertise, insights, methods, and tools from multiple disciplines.
 - Oceanography
 - Climate science
 - Biology
 - Natural resource management
 - Coastal and ocean engineering
 - Computer/data science
 - Public policy
 - Economics

Coastal CUBEnet

Environmental Intelligence 4-D Ocean Cube

Viking Ocean Met E	Buoy	Datawell Wave Rider Buoy		
Wind speed	kts	Surface currents	m/sec	
Wind Gusts	kts	kts GPS		
Wind Direction	deg	Displacements	m	
RH	%	Spectral Statistics	m, date, sec	
P-ATM	in HG	Wave height Statistics	m, date, sec	
Wave Period	sec	MEM spectrums	deg, Hz, density	
Wave Height	m	Current meter	m/sec	
Wave Peak	m	Sea surface temps		
Rain	mm	Spectral Statistics	m, date, sec	
Surface Current Speed	m/sec	Wave Spectrums	m ² /Hz, Hz, deg	
Surface Current Direction	deg			
ADCP Water Volume Profiler	m/sec			
Resulting Current Directions	deg			
Water Column CTD Profile	ppt, °C, m			
GPS	decimal degrees			

Data Environment

Data Environment

Profiling Data

Sea Surface Wave Data

Data Environment High-Resolution Sensor Network

High-Resolution Sensor Network

Data Environment High-Resolution Sensor Network

Data Environment High-Resolution Sensor Network

THEREMISTOR DATA

CODAR Surface Current Measurement Node (1km resolution)

Data Environment Iver3

Model Environment

http://oceancube.usm.edu/ and http://131.95.7.148/

Model Summary

Name	Source	Horizontal Resolution	Vertical	Time	Forecast
			Resolution	Step	
			36 z, sigma	3-hour	120 hours
нүсом	hycom.org experiment 90.1m000		and		
		5.5 KIII	isopycnal		
			layers		
AMSEAS	ncdc.noaa.gov	2 1	40 z and	3-hour	96 hours
		3 KM	sigma layers		
NGOFS2	tidesandcurrents.noaa.gov	1 km	41 sigma	3-hour	54 hours
		calculated at 45 m – 11 km	layers		
BellHop	Michael B. Porter	Variable	Variable	NA	NA

Model Environment

Model Environment (Surface Currents)

HYCOM Data for Rectangle Bounded By West-88.55, South:29.75, East:-88.36, and North:29.92 at Time:2022-02-23

Longitude	Latitude	Depth(m)	Speed(m/s)	Direction(degT)	Temperature(F)	Salinity(PSU)	Sound Velocity(m/
-88.553	29.7538	0	0.0529	352.9263	66.7291	35.8767	1520.4756
-88.553	29.7538	2	0.0354	357.3963	66.7251	35.8764	1520.5027
-88.553	29.7538	4	0.0194	15.5663	66.7116	35.8757	1520.5143
-88.553	29.7538	6	0.0098	53.6085	66.6823	35.8746	1520.5007
-88.553	29.7538	8	0.0164	163.1792	66.6253	35.8729	1520.4431
-88.553	29.7538	10	0.0381	182.4249	66.5252	35.8707	1520.3174
-88.553	29.7538	12	0.0662	190.2756	66.3424	35.8656	1520.0581
-88.553	29.7538	15	0.0943	196.6984	66.0660	35.8618	1519.6687
-88.553	29.7538	20	0.0808	179.3256	65.2195	35.9215	1518.4756
-88.553	29.7538	25	0.0704	179.1907	65.0803	35.9476	1518.3662
-88.553	29.7701	0	0.0518	354.3876	66.5842	35.8493	1520.2182
-88.553	29.7701	2	0.0347	0.3982	66.5803	35.8492	1520.2454
-88.553	29.7701	4	0.0190	24.2139	66.5670	35.8484	1520.2571
-88.553	29.7701	6	0.0098	61.2135	66.5380	35.8474	1520.2441
-88.553	29.7701	8	0.0173	161.0911	66.4787	35.8455	1520.1825
-88.553	29.7701	10	0.0388	181.5823	66.3750	35.8433	1520.0506
-88.553	29.7701	12	0.0670	189.3089	66.1821	35.8382	1519.7750
-88.553	29.7701	15	0.0917	196.8588	65.9198	35.8355	1519.4079
-88.553	29.7701	20	0.0783	177.9436	65.0663	35.9126	1518.2204
-88.553	29.7701	25	0.0652	178.4734	64.9734	35.9487	1518.1961
-88.553	29.7863	0	0.0495	355.6954	66.4731	35.8232	1520.0146
-88.553	29.7863	2	0.0329	2.9527	66.4692	35.8231	1520.0419
-88.553	29.7863	4	0.0181	26.0729	66.4558	35.8223	1520.0534
-88.553	29.7863	6	0.0093	73.7772	66.4271	35.8213	1520.0408
-88.553	29.7863	8	0.0195	160.8161	66.3650	35.8193	1519.9745
-88.553	29.7863	10	0.0409	180.7238	66.2553	35.8168	1519.8327
-88.553	29.7863	12	0.0688	188.3367	66.0506	35.8120	1519.5380
-88.553	29.7863	15	0.0902	197.1185	65.7999	35.8104	1519.1898

- To support emerging unmanned vehicle testing requirements USM's has developed its Coastal CUBEnet Environment.
- Coastal CUBEnet's EI mission is to provide comprehensiveNowcasts and Forecasts in support of unmanned vehicletesting.
- Coastal CUBEnet displays high-frequency radar observations,bathymetry, acoustic noise, current, temperature, salinity, and densityprofiles along, meteorological information.
- Coastal CUBEnet extracts and displays the data from these widely used ocean and acoustic models, HYCOM, AMSEAS, NGOFS2, and BellHop.